Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Atmosphere ; 13(5), 2022.
Article in English | Scopus | ID: covidwho-1933963

ABSTRACT

The lockdown measures implemented due to the SARS-CoV-2 pandemic to reduce the epidemic curve, in most cases, have had a positive impact on air quality indices. Our study describes the changes in the concentration levels of PM2.5 and PM10 during the lockdown and post-lockdown in Victoria, Mexico, considering the following periods: before the lockdown (BL) from 16 February to 14 March, during the lockdown (DL) from 15 March to 2 May, and in the partial lockdown (PL) from 3 May to 6 June. When comparing the DL period of 2019 and 2020, we document a reduction in the average concentration of PM2.5 and PM10 of −55.56% and −55.17%, respectively. Moreover, we note a decrease of −53.57% for PM2.5 and −51.61% for PM10 in the PL period. When contrasting the average concentration between the DL periods of 2020 and 2021, an increase of 91.67% for PM2.5 and 100.00% for PM10 was identified. Furthermore, in the PL periods of 2020 and 2021, an increase of 38.46% and 31.33% was observed for PM2.5 and PM10, respectively. On the other hand, when comparing the concentrations of PM2.5 in the three periods of 2020, we found a decrease between BL and DL of −50.00%, between BL and PL a decrease of −45.83%, and an increase of 8.33% between DL and PL. In the case of PM10, a decrease of −48.00% between BL and DL, −40.00% between BL and PL, and an increase of 15.38% between the DL and PL periods were observed. In addition, we performed a non-parametric statistical analysis, where a significant statistical difference was found between the DL-2020 and DL-2019 pairs (x2 = 1.204) and between the DL-2021 and DL-2019 pairs (x2 = 0.372), with a p < 0.000 for PM2.5, and the contrast between pairs of PM10 (DL) showed a significant difference between all pairs with p < 0.01. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

2.
Environ Res ; 198: 111236, 2021 07.
Article in English | MEDLINE | ID: covidwho-1213220

ABSTRACT

Amid the COVID-19 pandemic, a nationwide lockdown was imposed in the United Kingdom (UK) on March 23, 2020. These sudden control measures led to radical changes in human activities in the Greater London Area (GLA). During this lockdown, transportation use was significantly reduced and non-key workers were required to work from home. This study aims to understand how population exposure to PM2.5 and NO2 changed spatially and temporally across London, in different microenvironments, following the lockdown period relative to the previous three-year average in the same calendar period. Our research shows that population exposure to NO2 declined significantly (52.3% ± 6.1%), while population exposure to PM2.5 showed a smaller relative reduction (15.7% ± 4.1%). Changes in population activity had the strongest relative influence on exposure levels during morning rush hours, when prior to the lockdown a large percentage of people would normally commute or be at the workplace. In particular, a very high exposure decrease was observed for both pollutants (approximately 66% for NO2 and 19% for PM2.5) at 08:00am, consistent with the radical changes in population commuting. The infiltration of outdoor air pollution into housing modifies the degree of exposure change both temporally and spatially. Moreover, this study shows that the impacts on air pollution exposure vary across groups with different socioeconomic status (SES), with a disproportionate positive effect on the areas of the city home to more economically deprived communities.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Environmental Monitoring , Humans , London/epidemiology , Nitrogen Dioxide/analysis , Pandemics , Particulate Matter/analysis , SARS-CoV-2 , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL